Backward Euler–Maruyama Method for the Random Periodic Solution of a Stochastic Differential Equation with a Monotone Drift

نویسندگان

چکیده

Abstract In this paper, we study the existence and uniqueness of random periodic solution for a stochastic differential equation with one-sided Lipschitz condition (also known as monotonicity condition) convergence its numerical approximation via backward Euler–Maruyama method. The is shown limit pull-back flows SDE discretized SDE, respectively. We establish rate strong error method order 1/2.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Backward stochastic differential equations with Young drift

We show the well-posedness of backward stochastic differential equations containing an additional drift driven by a path of finite q-variation with q ∈ [1, 2). In contrast to previous work, we apply a direct fixpoint argument and do not rely on any type of flow decomposition. The resulting object is an effective tool to study semilinear rough partial differential equations via a Feynman–Kac typ...

متن کامل

Periodic solution for a delay nonlinear population equation with feedback control and periodic external source

In this paper, sufficient conditions are investigated for the existence of periodic (not necessarily positive) solutions for nonlinear several time delay population system with feedback control. Nonlinear system affected by an periodic external source is studied. Existence of a control variable provides  the extension of  some previous results obtained in other studies. We give a illustrative e...

متن کامل

Numerical Solution of Heun Equation Via Linear Stochastic Differential Equation

In this paper, we intend to solve special kind of ordinary differential equations which is called Heun equations, by converting to a corresponding stochastic differential equation(S.D.E.). So, we construct a stochastic linear equation system from this equation which its solution is based on computing fundamental matrix of this system and then, this S.D.E. is solved by numerically methods. Moreo...

متن کامل

A solution of nonlinear fractional random differential equation via random fixed point technique

In this paper, we investigate a new type of random $F$-contraction and obtain a common random fixed point theorem for a pair of self stochastic mappings in a separable Banach space. The existence of a unique solution for nonlinear fractional random differential equation is proved under suitable conditions.

متن کامل

Discretizing a Backward Stochastic Differential Equation

where (Yt,Zt) are unknown predictable processes. We will assume that f is a Lipschitz function with respect to its arguments throughout this paper. Since this equation has its important applications into control theory and mathematical finance, many mathematicians are not satisfied merely by descriptive existence theorems. They are also interested in constructing the numerical solutions. In ord...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Theoretical Probability

سال: 2022

ISSN: ['1572-9230', '0894-9840']

DOI: https://doi.org/10.1007/s10959-022-01178-w